Weitere Informationen, Hintergründe und Links

Weitergehende Forschung zum Thema Quantencomputing in der FMD:

- Netzwerke und Kompetenzzentren
- Forschungsprojekte und Forschungsfelder
- Angebote
- Data Sheet

Netzwerke und Kompetenzzentren

Applikationszentrum Quantenkommunikation – Design skalierbarer Elektroniksysteme @ Fraunhofer IIS/EAS

Mehr erfahren

BayQS - Bayerisches Kompetenzzentrum Quanten Security and Data Science

Mehr erfahren

Fraunhofer Kompetenznetzwerk Quantencomputing

mit Fraunhofer IAF (Quantenhardware, hybride Rechensysteme), Fraunhofer IIS (Elektronik zur Messung und Steuerung, Quantenalgorithmen für Maschine Learning und Optimierung), Fraunhofer IIS/EAS (Optimierung, Simulation), Fraunhofer IMS (Halbleiterelektronik und Sensoren)

Herzstück des Kompetenznetzwerks Quantencomputing ist der IBM Q System One in Ehningen. (Technische Daten: 27 supraleitende Qubits, Quantenvolumen von 64, Kohärenzzeit \approx 100 μ s, Single Qubit Gate Fehler \approx 0,05%, 2 Qubit Gate Fehler \approx 1%, Operationszeit 2 Qubit Gate \approx 500 ns für CNOT)

Mehr erfahren

Kompetenzzentrum Quantencomputing Baden-Württemberg

Mehr erfahren

Mehr zur Förderung

Forschungsprojekte und Forschungsfelder

Abhörsichere Quantenkommunikation gewinnt Innovationswettbewerb (mit Leibniz FBH)

Mehr erfahren

ASTERIQS – Quantensensoren messen winzige Magnetfelder (mit Fraunhofer IAF)

Mehr erfahren

Aufbruch in die Quantentechnologie: Das Fraunhofer HHI beteiligt sich am BMBF-geförderten Verbundprojekt Q.Link.X

Mehr erfahren

Zur Projektwebseite

BECCAL – Verbundvorhaben zur Quantentechnologie auf der Internationalen Raumstation gestartet (mit Leibniz FBH)

Mehr erfahren

CiViQ – Continuous Variable Quantum Communications (mit Fraunhofer HHI)

Mehr erfahren

Zur Projektseite

DE-Brill – **Deutsche Brilliance** – **Herstellungsprozess und neuartige Steuerungstechniken für Diamant-Quantencomputer** (mit Fraunhofer IAF)

Mehr erfahren

DiaPol – Mit Diamant die Krebsdiagnostik revolutionieren (mit Fraunhofer IAF)

Mehr erfahren

DiLaMag – NV-dotierter CVD Diamant für ultra-sensitive Laserschwellen-Magnetometrie (mit Fraunhofer IAF)

Mehr erfahren

Zur Projektseite

Erste quantengesicherte Videokonferenz zwischen zwei Bundesbehörden – Initiative QuNET demonstriert hochsichere und praxisnahe Quantenkommunikation (mit Fraunhofer HHI)

Mehr erfahren

Forschungsfeld Quantentechnologien @ Fraunhofer HHI

Mit Kompetenzen in: Quantenkommunikationssystemen (Anwendungsoptimierte, integrierte Systeme für Quantum Key Distribution (QKD / Quantenschlüsselaustausch) | Teleskope und Tracking-Systeme für optische Freistrahl-Quantenkommunikation | Optimierte Systeme für das QKD-Postprocessing | Testinfrastrukturen für Quantenkommunikation über optische Freistrahl- und Faserverbindungen | Aspekte der Integration und Zertifikation in verschiedenen Anwendungsszenarien), Photonischen Komponenten für Quantentechnologien (Anwendungsspezifische integrierte quantenphotonische Module mit breiter spektraler Transparenz | Protokoll-angepasste integrierte QKD-Transmitter und -Receiver | Integriert-optische Quellen einzelner und verschränkter Photonen | Raumtemperaturfähige Einzelphotonendetektoren | Kohärente Empfänger für CV-QKD | Integration nichtlinearer optischer Kristalle und effektive Pumplichtunterdrückung), Quantensensorik & -informationsverarbeitung (Einzelphotonensensorik und –metrologie | Quantensensorik mit kontinuierlichen Variablen | Schnelle Messsteuerung im GHz-Bereich / Protokollimplementierung | Anwendungsspezifische Komponenten, Implementierungen und Gesamtsysteme)

Anwendungen: Quantenschlüsselaustausch mit diskreten und kontinuierlichen Variablen in Fasernetzen und über Freistrahlverbindungen (CV-QKD & DV-QKD) | Informationsverarbeitung mit linear-optischen Quantencomputern und kohärenten Ising Maschinen | Klassische photonisch integrierte Komponenten für Ionen-, Neutral-Atom- und Defektzentrenbasierte Quantencomputer | Klassische photonisch integrierte Komponenten sowie Quetschlichtquellen für Quantensensorik | Faserbasierter Quantenzustandsaustausch zwischen Qubitsystemen | Erzeugung und Detektion nichtklassischer Lichtzustände

Mehr erfahren

Forschungsgruppe Halbleiter-Optoelektronik @ Leibniz FBH

Hier werden u. a. siliziumbasierte Quantenmaterialien hinsichtlich ihrer Eignung für neuartige Quantentechnologien evaluiert und optimiert.

Forschungsgruppe Prozess- und Bauelementforschung @ Leibniz FBH

U. a. mit Forschungsschwerpunkten: Generierung und Erforschung geeigneter Schichtsysteme für Quantencomputer, Prozessentwicklung für Quantenstrukturen

Mehr erfahren

Fraunhofer Leitprojekt Quantum Methods for Advanced Imaging Solutions – QUILT – mit CMOS Image Sensors – Einzelphotonen-Detektoren für Quantum Imaging @ Fraunhofer IMS

Mehr erfahren

CMOS Image Sensors

GeQCoS – Deutscher Quantencomputer basierend auf supraleitenden Qubits (mit Fraunhofer IAF)

Mehr erfahren

HPCQS – Hybride Quanten-Hochleistungscomputer (mit Fraunhofer IAF)

Mehr erfahren

Innovationsforum Photonische Quantentechnologien (mit Fraunhofer IZM, Leibniz FBH)

Mehr erfahren

Innovationsforum Quantentechnologien in Berlin (mit Fraunhofer IZM, Leibniz FBH)

Mehr erfahren

Zur Projektseite

Jedischwert und Quantenrechner: Optik- und Photonikforschung in Berlin (mit Leibniz FBH)

KryoproPlus – Auf Betriebstemperatur: Statistische Charakterisierung von Halbleiter-Qubits bei 2 Kelvin – Das BMBF fördert die Anschaffung und Verifizierung eines kryogenen On-Wafer-Probers am Fraunhofer IAF

Mehr erfahren

MATQu – Materialien für das Quantencomputing (mit Fraunhofer IAF, Fraunhofer IPMS, Fraunhofer-Verbund Mikroelektronik, GS Forschungsfabrik Mikroelektronik Deutschland FMD)

Zur Projektseite

MetaboliQs – Herz-Kreislauf-Erkrankungen besser erkennen dank Diamant (mit Fraunhofer IAF)

Mehr erfahren

Zur Projektseite

Munich Quantum Valley (mit Fraunhofer EMFT, Fraunhofer IIS, Fraunhofer IISB)

Mehr erfahren

Presseinformationen

NHEQuanLEA – Ein selektiv auf Si-Nanospitzen gewachsenes hybrides Graphen/III-V-System (mit Leibniz FBH)

Eine Korrelationsstudie der strukturellen und optoelektronischen Eigenschaften.

Mehr erfahren

OpenQKD BerlinaleQ – Ein innovatives internationales Filmfestival mit QKD-geschützter Filmdistribution (mit Fraunhofer HHI)

Mehr erfahren

QC-4-BW – Diamant-basiertes, spintronisches Quantenregister für skalierbaren Quantenprozessor (mit Fraunhofer IAF)

Quantencomputing @ Fraunhofer IAF

Mehr erfahren

Quantenphotonik: Projekt UNIQORN ermöglicht kostengünstige Quantenkommunikation (mit Fraunhofer HHI)

Mehr erfahren

Quantenrepeater.Link (QR.X) (mit Fraunhofer HHI)

Mehr erfahren

Zur Projektseite

Quantensensorik @ Fraunhofer IAF

Mehr erfahren

Quantensysteme - Quantentechnologien @ Fraunhofer IAF

Mehr erfahren

Quantentechnologien @ Fraunhofer IIS

FAQ

Zukunftsinitiativen

Quantum Key Distribution @ Fraunhofer HHI

Mehr erfahren

QUASAR – Halbleiter-Quantenprozessor mit shuttlingbasierter skalierbarer Architektur (mit Fraunhofer IAF, Fraunhofer IPMS, Leibniz IHP)

Zur Projektseite

QLSI – Quantenintegration in großem Maßstab mit Silizium (mit Fraunhofer IAF, Fraunhofer IPMS, Leibniz IHP)

Mehr erfahren

QMag – Quantenmagnetometrie (mit Fraunhofer IAF, Fraunhofer IISB)

Mehr erfahren

Zur Projektseite

QORA – Quantenoptimierung mit resilienten Algorithmen (mit Fraunhofer IAF)

Mehr erfahren

QuNET - Demonstrationsexperiment zur Kommunikation unter Einsatz von Quantentechnologien (mit Fraunhofer HHI)

Mehr erfahren

Zur Projektseite

QuNET+ML - Optimierung von QKD-Netzen mittels maschinellen Lernens (mit Fraunhofer HHI)

Mehr erfahren

Zur Projektseite

QuoAlA – Quantenverschränkte Photonenpaar-Quelle auf Basis von AlGaAs-Bragg-Reflexions-Wellenleitern (mit Fraunhofer IAF)

Mehr erfahren

Quantum Future Academy mit Leibniz FBH

Mehr erfahren

SEQUENCE – Kryogene 3D-Nanoelektronik (mit Fraunhofer IAF)

Mehr erfahren

SIM-QPla: Quantensprung in der Mikroplastik-Analytik (mit Leibniz FBH)

Mehr erfahren

Strategisches Forschungsthema Mikroelektronik für Quantentechnologien @ Fraunhofer EMFT

U. a. mit Mikro- und Nanotechnologien zur Herstellung von Qubit-Chips und -Systemen mit dem Schwerpunkt Skalierung und Fertigung I heterogene 3D-Integration der Qubit-Chips auf Wafer-Ebene I Test- und Analysemöglichkeiten für Quantenchips I Rolle-zu-Rollehergestellte flexible rauscharme Verbindungen für Quantencomputer mit supraleitenden Materialien mittels Lithografie produziert I Design und Entwicklung von ASICs

Mehr erfahren

Trendthema Quantum Photonic Packaging @ Fraunhofer IZM

Mehr erfahren

Verbundprojekt SPINNING – Quantencomputer auf Basis von Spin-Qubits in Diamant (mit Fraunhofer IAF, Fraunhofer IISB)

Mehr erfahren

Zur Projektseite

Vorhang auf: Fraunhofer und IBM weihen Quantencomputer ein (2021)

Mehr erfahren

Angebote

Analyse und Test von elektronischen Komponenten und Systemen, u. a. für Quanten-Chips @ Fraunhofer EMFT

Applikationslabor Quantensensorik @ Fraunhofer IAF

Mehr erfahren

Detektion von schwachen Magnetfeldern @ Fraunhofer ISIT

Mehr erfahren

Design und Layout von integrierten Schaltkreisen (IC), u. a. für Quantencomputing @ Fraunhofer EMFT

Mehr erfahren

Diamant-Nanophotonik @ Leibniz FBH

Mehr erfahren

ErBeStA - Error-Proof Bell-State Analyzer (ErBeStA) (mit Leibniz FBH)

Mehr erfahren

Gemeinsam zum skalierbaren Halbleiter-Quantencomputer (mit Leibniz FBH)

Mehr erfahren

HalQ - Halbleiterbasiertes Quantencomputing @ Fraunhofer IPMS

Mehr erfahren

Heterogene 3D-Integration zur Integration und Miniaturisierung der Qubit-Chips auf Wafer-Ebene @ Fraunhofer EMFT

Mehr erfahren

Integrierte Quantensensoren @ Leibniz FBH

Kompetenzen des Fraunhofer IAF im Quantencomputing

Mehr erfahren

Komponenten, Module & Systeme für Quantentechnologien @ Leibniz FBH

Mehr erfahren

Materialien für die Mikro- und Nanoelektronik – Quantum-Bits-Bauelemente @ Leibniz IHP

Mehr über Materialien erfahren

Mehr über Forschung erfahren

MEMS-Prozesse für Quantencomputing und Quantensensorik @ Fraunhofer ISIT

Mehr erfahren

Mikro- und Nanotechnologien zur Herstellung von Qubit-Chips und -Systemen mit dem Schwerpunkt Skalierung und Fertigung @ Fraunhofer EMFT

Mehr erfahren

Mikrowellen in der Quantentechnologie @ Leibniz FBH

Mehr erfahren

Miniaturisierte gepulste RGB-Laserquellen @ Fraunhofer ISIT

Mehr erfahren

Mit Spezialausstattung von der Quantenforschung zu marktreifen Produkten (mit Fraunhofer IZM)

Mehr erfahren

Multifunktionale hermetische Versiegelung mit kombinierten Glas/Si-Gehäusen, u.a. für optische Signalmanipulation für Quantensensorik @ Fraunhofer ISIT

Mehr erfahren

QLindA – Quantum Reinforcement Learning (mit Fraunhofer IIS)

Mehr erfahren

Qsolid - Quantum Computer in the Solid State (mit Fraunhofer IPMS, Fraunhofer IZM-ASSID)

Fraunhofer IPMS

Fraunhofer IZM

Quantum Machine Learning zur Lösung industrieller Anwendungen @ Fraunhofer IIS

Mehr erfahren

QuaST – Quanten-Computing Tools und Services für industrielle Anwendungen ermöglichen (mit Fraunhofer IIS, Fraunhofer IISB)

Mehr erfahren

Quantenkommunikation für eine sichere digitale Kommunikation @ Fraunhofer IIS/EAS

Mehr erfahren

Quantenlicht-Module @ Leibniz FBH

Mehr erfahren

Quantenphotonische Komponenten @ Leibniz FBH

Mehr erfahren

Quantum Solutions – MEMS-Prozesse für Quantencomputing und Quantensensorik @ Fraunhofer ISIT

Quantum Technology: Quantum sensing is gaining (s)pace @ Leibniz FBH

Mehr erfahren

PEARLS – Schaffung einer integrierten Systemlösung auf Basis der Siliziumphotonik, die quantenpunktbasierte Indiumphosphid-Halbleiterlaserquellen und siliziumphotonische elektrooptische integrierte Schaltungen (ePIC) miteinander vereint und auf diese Weise eine Plattform für hochbitratige, chipintegrierte optische Übertragungstechnik verwirklicht (mit Fraunhofer IZM, Leibniz IHP)

Mehr erfahren

Photonische Quantentechnologien @ Leibniz FBH

Mehr erfahren

PhoQuant – Photonischer Quantencomputer Made in Germany (mit Fraunhofer IPMS als Konsortialpartner)

Mehr erfahren

SPAD QRNG – Quanten-Zufallsgeneratoren mit SPAD-basierten Sensoren für eine sichere Verschlüsselung @ Fraunhofer IMS

Mehr erfahren

Schulungen zu Funktionsweise und Anwendungen von Quantencomputern @Kompetenzzentrum Quantencomputing (mit Fraunhofer IAF)

Mehr erfahren

Zuverlässige Halbleiter für Space, Satelliten und Quantentechnologien @ Leibniz FBH

Mehr erfahren

2D-Quasi-Statische MEMS-Mikro-Spiegel, u.a. für neue Anwendungen im Quantensensing und -computing @ Fraunhofer ISIT

Data Sheet

Data Sheet Diamond Epitaxy – Synthetic diamond for quantum technologies

Mehr erfahren

Data Sheet Kryogene Elektronik - Ultra-rauscharme Hochfrequenzverstärker @ Fraunhofer IAF

Mehr erfahren

Data Sheet Quantum Sensing - From diamond development all the way to industrial applications @ Fraunhofer IAF

Mehr erfahren

Data Sheet Quantum Information - Characterization of quantum hardware, error mitigation and portfolio optimization

Mehr erfahren

Data Sheet Spin-photon quantum computing - Quantum computing based on color center and nuclear spins in diamond @ Fraunhofer IAF

Mehr erfahren

13